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Abstract

We present a general formalism for extracting information on the fundamen-

tal parameters associated with neutrino masses and mixings from two or more

long baseline neutrino oscillation experiments. This formalism is then applied

to the current most likely experiments using neutrino beams from the Japan

Hadron Facility (JHF) and Fermilab's NuMI beamline. Di�erent combina-

tions of muon neutrino or muon anti-neutrino running are considered. To

extract the type of neutrino mass hierarchy we make use of the matter e�ect.

Contrary to naive expectation, we �nd that both beams using neutrinos is

more suitable for determining the hierarchy provided that the neutrino en-

ergy divided by baseline (E=L) for NuMI is smaller than or equal to that of

JHF. Whereas to determine the small mixing angle, �13, and the CP or T

violating phase Æ, one neutrino and the other anti-neutrino is most suitable.

We make extensive use of bi-probability diagrams for both understanding and

extracting the physics involved in such comparisons.
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I. INTRODUCTION

The solar neutrino puzzle, which has lasted nearly 40 years, has �nally been resolved
by KamLAND [1] after invaluable contributions by numerous solar neutrino experiments,
especially recently by SNO [2] and Super-Kamiokande [3]. The Large-Mixing-Angle (LMA)
region of the Mikheev-Smirnov-Wolfenstein (MSW) [4] triangle [5] has now been uniquely
selected. This resolution to the solar neutrino puzzle has opened the door to the experimen-
tal exploration of CP violation in the Lepton Sector. Together with the existing evidence
for neutrino oscillation that has been obtained by the pioneering atmospheric neutrino ob-
servations [6] and the long-baseline accelerator experiments [7], it lends further support to
the standard three-avor mixing scheme of neutrinos.

The remaining task toward the goal of uncovering the complete structure of the lepton
avor mixing would be a determination of the (1-3) sector of lepton mixing matrix which
is now called as the Maki-Nakagawa-Sakata matrix (MNS) [8]. A full determination of the
(1-3) sector includes a determination of �13, the CP or T violating phase Æ and the sign of
�m2

13. (We de�ne �m2
ij � m2

j �m2
i , where mi is the mass of the i-th eigenstate.)

The sign of �m2
13 signals which pattern of neutrino masses nature has chosen, the normal

hierarchy, �m2
13 > 0, or the inverted hierarchy, �m2

13 < 0. This hierarchy must certainly
carry interesting information on the, yet undiscovered, underlying principle of how nature
organizes the neutrino sector. While the hierarchy question is of great interest, at this
moment, there is no experimental information available. One possible exception is a hint
from the neutrino data from supernova SN1987A [9], however the basis of this hint is under
discussion [10].

To design the experiments to measure CP or T violating phase Æ we must know in advance
�13, or at least its order of magnitude. There have been many proposals for experiments
which may be able to measure �13. They can be classi�ed into two categories, long-baseline
(LBL) accelerator experiments [11{15], and reactor experiments [16,17]. While �13 may be
eventually measured by some of these experiments it was recognized that this measurement
su�ers from a problem of parameter degeneracy [18{23]. It stems from the fact that the
determination of �13, Æ and the sign of �m2

13 are inherently coupled with each other.
A complete solution to the parameter degeneracy would require extensive measurement

at two di�erent energies and/or two di�erent baselines [19,24,25], or to combine two di�erent
experiments [17,25{28]. We, however, seek an alternative strategy in this paper. That is,
we propose to solve it one by one. We pursue the possibility that determination of the sign
of �m2

13 may be carried out with only a limited set of measurement. It is similar in spirit
to the one employed in [21] in which we proposed a way to circumvent at least partly the
problem of (�13, Æ) degeneracy.

In this paper, we explore the line of thought of comparing measurement at two di�erent
energies and/or combining two di�erent experiments to determine the sign of �m2

13 and
�13. In particular, it is of concern to us how to combine the JHF [13] and NuMI O�-
Axis [14] experiments. Apart from possibility of earlier detection in MINOS, OPERA or
reactor experiments, the e�ect of nonzero �13 is likely to be determined by observing electron
appearance events in these LBL experiments. Hence, it is of great importance to uncover
ways by which these two experiments can compliment one another. We discuss in this paper
which combination of modes of operation (� or �� channels) and which neutrino energies
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divided by baseline (E=L) have better sensitivity for determining the sign of �m2
13 and/or

measuring �13.
While our treatment applies to wider context beyond application to the particular exper-

iments, �nding a way of optimizing the JHF-NuMI interplay is, we believe, a very relevant
and urgent question for both of these projects. It is likely that the JHF experiment in its
phase I operates in neutrino mode [13]. Given the state of the other projects, NuMI is the
one which is most likely to become a reality. Therefore, it is important to �nd the most
pro�table mode of operation of the NuMI O�-Axis project.

We start by giving a general formalism of comparing two di�erent measurement. It is
to illuminate the analytic structure of the problem of two experiments comparison, and
it would be of help in understanding the physical characteristics behind the observations
we will provide. Instead of engaging an intensive �2 analysis we prefer to illuminate the
global chart of the two experiment comparison. To carry this out we rely heavily on a
generalized version of the CP/T bi-probability plot that was introduced and developed in
Refs. [20,29,23]. Our discussion in this paper, while not the complete story, it is suÆcient
to enable us to understand the key physics points. The experimental issues that need to be
addressed to complete the picture are beyond the scope of this paper.

The reader who wants to focus on the physics conclusions, in particular on our key
observations in JHF-NuMI comparison, can go directly to Sec. III, skipping Sec. II. Then,
they might want to come back to read the Sec. II for a deeper understanding.

II. GENERAL FORMALISM FOR COMPARISON OF TWO DIFFERENT

MEASUREMENT

Let us combine two measurements, either � or ��, for two di�erent energies and/or base-
lines. For example, one measurement could come from JHF and another measurement from
NuMI, with both � (or ��) or one � and the other ��. All combinations can be treated in the
universal formalism presented here.

We can start with two basic equations as in [23] for small sin �13:

P �(�) = X��2 + Y �� cos
�
Æ +

��

2

�
+ P �

�

P �(�) = X��2 + Y �� cos

 
Æ +

��

2

!
+ P �

� (1)

where � � sin �13, and the superscripts � and � label the process and the experimental
setup. The value of the parameters X�, Y � and �� depend on the process (speci�ed by �),
the energy and path length of the experiment as well as sign of �m2

13 and the density of
matter traversed by the neutrino beam. In Table I we give the values for the X's, Y 's and
�'s in terms of the variables X�, Y� and �13 which will be de�ned below.
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TABLES

Process �� ! �e �� ! �e ��� ! ��e ��� ! ��e �e ! �� �e ! �� ��e ! ��� ��e ! ���

sign �m2
13 + ve � ve + ve � ve + ve � ve + ve � ve

X X+ X� X� X+ X+ X� X� X+

Y Y+ Y� �Y� �Y+ Y+ Y� �Y� �Y+
� �13 ��13 ��13 �13 ��13 �13 �13 ��13

TABLE I. The assignments for the parameters of Eq.(1) depending on the oscillation processes

and sign of �m2
13.

The functions X�, Y� and P� are given by [30]

X� = 4s223

 
�13

B�

!2
sin2

�
B�
2

�
; (2)

Y� = �8c12s12c23s23
�
�12

aL

� 
�13

B�

!
sin

�
aL

2

�
sin

�
B�
2

�
(3)

P� = c223 sin
2 2�12

�
�12

aL

�2
sin2

�
aL

2

�
(4)

with

�ij �
j�m2

ijjL
2E

and B� � j�13� aLj; (5)

where a =
p
2GFNe denotes the index of refraction in matter with GF being the Fermi

constant and Ne a constant electron number density in the earth. Some crucial properties
of the functions X� and Y� which allow this uni�ed notation are summarized in Appendix
A.

The basic equations (1) can be solved for either sign of �m2
13 as:

� =

s
P � � P ��

X�
� Y �

2X�
cos

�
Æ +

��

2

�
=

s
P � � P �

�
X�

� Y �

2X�
cos

 
Æ +

��

2

!
: (6)

where we have ignored terms of order Y 2

X
. The right equality can be used to solve for both

sin Æ and cos Æ from which � is then determined. This is a straightforwardly generalization
of the method used in [23] to obtain, analytically, the degenerate set of solutions and to
elucidate the relationships between them. Here, we will present the result of such a general
analysis in the Appendix A. An important point, however, is that once the solutions for Æ
are known, � is easily obtained using left hand equality in Eq. (6).

Experimentally the most likely channels to be realized in the near future are �� ! �e
and ��� ! ��e, therefore in the next two subsections we will specialize to these channels
with both beams being Neutrinos (or Anti-Neutrinos) and one beam of Neutrinos and one
beam of Anti-Neutrinos. In the following section we will consider the speci�c experimental
situations presented by the JHF [13] and NuMI [14] proposals.
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A. Both Neutrinos or Both Anti-Neutrinos

We apply the general formalism developed in the previous section to an explicit example
of a �-� comparison of two experiments with di�erent energies and baseline distances. At
the end of this subsection we will give the relationship to the ��-�� comparison. We will
label the two experiments J and N in reference to JHF and NuMI. However, in spite of the
reference to speci�c two projects, our general discussions are valid for any pair of the LBL
experiments on the globe and can also be used to discuss other processes but here we will
concentrate on �� ! �e.

We start by introducing some convenient notation. Since we will treat �m2
13 > 0 and

�m2
13 < 0 simultaneously we will label the various quantities below with subscripts � to

indicate the sign of �m2
13. We de�ne

S� � � Y J
�

2XJ�
sin

 
�J
13

2

!
� Y N

�
2XN�

sin

 
�N
13

2

!
; (7)

C� � � Y J
�

2XJ�
cos

 
�J

13

2

!
+

Y N
�

2XN�
cos

 
�N
13

2

!
; (8)

D� � S2
� + C2

�; (9)

�P� �
vuutP J � P J�

XJ�
�
vuutPN � PN�

XN�
: (10)

The signs and the subscript assignment come from Table 1.
By solving (6) with these de�nitions, it is easy to derive (see Appendix A), for positive

�m2
13, the allowed values of (�; Æ) which we assign subscripts 1 and 2;

sin Æ1;2 =
1

D+

�
�S+�P+ � C+

q
D+ � (�P+)2

�
;

cos Æ1;2 =
1

D+

�
�C+�P+ � S+

q
D+ � (�P+)2

�
: (11)

Notice that with this choice of signs sin2 Æi+cos2 Æi = 1. For negative �m2
13, we use subscripts

3 and 4 to distinguish them from the positive �m2
13 solutions,

sin Æ3;4 =
1

D�

�
�S��P� � C�

q
D� � (�P�)2

�
;

cos Æ3;4 =
1

D�

�
�C��P� � S�

q
D� � (�P�)2

�
: (12)

The relative � signs in (11) and (12) are arbitrary at this point but are the same as those
used in the next subsection.

The relationships between the mixed-sign degenerate solution are given by

cos (Æ1 � Æ3) =
(C+C� + S+S�)

D+D�

�
�P+�P� �

q
D+ ��P 2

+

q
D� ��P 2�

�

+
(C�S+ � C+S�)

D+D�

�
�P�

q
D+ ��P 2

+ +�P+
q
D� ��P 2�

�
; (13)
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sin (Æ1 � Æ3) =
(C�S+ � C+S�)

D+D�

�
�P+�P� �

q
D+ ��P 2

+

q
D� ��P 2�

�

� (C+C� + S+S�)
D+D�

�
�P�

q
D+ ��P 2

+ +�P+
q
D� ��P 2�

�
: (14)

We note that, unlike the case of �-�� comparison [29] which will be discussed in the next
section, there is no sensible limit �N

13 ! �J
13 and (aL)N ! (aL)J because in this limit no

extra information is provided. However, one can ask the question, can we obtain some useful
relationships between CP phases of the mixed-sign degeneracy in an approximation of small
di�erence in the matter e�ect between JHF and NuMI? The answer is yes and we will derive
such relations in Appendix B where we formulate such perturbative treatment.

The solutions for � can easily be obtained by substituting appropriate values of sin Æ and
cos Æ into Eq.(6). For positive �m2

13, the values of �1;2 are obtained by using the X
J
+; Y

J
+ ; �

J
13

and XN
+ ; Y

N
+ ; �N

13 in Eq.(6) and for negative �m2
13, the values of �3;4 are obtained by using

XJ
�; Y

J
� ; ��J

13 and X
N
� ; Y

N
� ; ��N

13. See Eq.(38) of the Appendix A for explicit expressions.
For the ��-�� comparison: for positive �m2

13, the values of �1;2 are obtained by using the
XJ
�; � Y J

� ; ��J
13 and XN

� ; � Y N
� ; ��N

13 in Eq.(6) and for negative �m2
13, the values of

�3;4 are obtained by using XJ
+; � Y J

+ ; �
J
13 and XN

+ ; � Y N
+ ; �N

13. Thus the allowed region
for the ��-�� comparison is identical to the �-� comparison except for the fact that the roles
of �m2

13 > 0 and �m2
13 < 0 are interchanged.1

B. One Neutrinos, One Anti-Neutrinos

We want to treat the �-�� comparison in an entirely analogous fashion as the �-� com-
parison in the previous subsection. Toward this goal we introduce a similar notation:

S0� � �
Y J
�

2XJ�
sin

 
�J
13

2

!
� Y N

�
2XN�

sin

 
�N
13

2

!
; (15)

C 0
� � �

Y J
�

2XJ�
cos

 
�J

13

2

!
� Y N

�
2XN�

cos

 
�N
13

2

!
; (16)

D0
� � (S 0�)

2 + (C 0
�)

2; (17)

�P 0
� �

vuutP J � P J�
XJ�

�
vuutPN � PN�

XN�
: (18)

where the subscript � in (18) denote the sign of �m2
13 and here PN is for anti-neutrinos.

The signs and the subscript assignment come from Table 1. These de�nitions are almost
identical to the �-� de�nitions but not quite, the � labels on the left hand side are di�erent
and these di�erence lead to markedly di�erent outcomes.

1The di�erence in the sign of the Y coeÆcients can be compensated by taking Æ ! Æ + �, see

Eq.(1). Thus the allowed regions are identical.
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It is easy to verify that by using the above notation sin Æi as well as �i are given by exactly
the same expressions as in the previous sections, e.g., (11) and (12), apart from replacement
S� ! S0�, C� ! C 0

�, and so on.
The relative � signs in (11) and (12) are determined such that it reproduces the pair of

the degenerate solutions, Æ3 = Æ1 + � (mod. 2�) in the limit of PN = P J , �J = �N and
(aL)J = (aL)N for a given value of �13 [23]. The relation, however, receives corrections due
to di�erence in matter e�ect between JHF and NuMI even at �J = �N . It is not diÆcult
to compute the correction at PN = P J in the form

Æ3 = Æ1 + � + CN�J h(aL)N � (aL)J
i
; (19)

to �rst order in JHF-NuMI di�erence of matter e�ects. The coeÆcient CN�J is given in
Appendix B.

Notice that the relation between the same-sign solutions of the CP violating phase is
given generically by the formula (42) in comparison of any two channels. Among other
things, Æ2 = � � Æ1 always holds at oscillation maximum, �N = �J = �, despite the
di�erence in matter e�ects at JHF and NuMI. It must be the case since the bi-probability
trajectories shrink to straight lines.2

III. JHF VERSES NUMI COMPARISON

In this section we will discuss explicitly the JHF and NuMI possibilities. JHF will have
a baseline of 295km, and the neutrino energy at which oscillation maximum occurs is

0:60 GeV

 
�m2

13

2:5 � 10�3 eV 2

!
: (20)

For our �gures we will use this energy plus 0.8 GeV which is 33% higher and near the peak
in the event rate for �e appearance due to the rising cross section but falling oscillation
probability assuming the same ux can be maintained.

So far the path length for NuMI is undecided but it will most likely be between 500 and
1000 km. We use 732km for our �gures, the path length of NuMI/MINOS. At this distance
oscillation maximum occurs at

1:5 GeV

 
�m2

13

2:5� 10�3 eV2

!�
L

732 km

�
: (21)

The other energy used is 33% higher at 2.0 GeV near the event rate peak for the reasons
stated for JHF.

In Fig. 1 we have plotted the allowed region in bi-probability space assume no knowledge
of � and Æ in a comparison between JHF neutrinos and NuMI neutrinos. This allowed region
forms two narrow \pencils" which originate at the origin and grow in width away from the

2The straight-line CP trajectory can be achieved even when energy distribution of neutrino ux

times cross section is taken into account [21].
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origin. Associated with each of these \pencils" is the sign of �m2
13, thus if the pencils are

well separated then a comparison of these two experiments can be used to determine the
sign of �m2

13. But the size of �13 is poorly determined in such a comparison. More details
on this �-� comparison will be given in the next subsection. (A ��-�� comparison is identical
but with the sign of �m2

13 ipped.)
In Fig. 2 we have plotted the allowed region in bi-probability space in a comparison

between JHF neutrinos and NuMI anti-neutrinos. Here the allowed regions are very broad
and there is signi�cant overlap between the allowed regions for the two signs of �m2

13.
However, the size of �13 can be determined with reasonable accuracy in such a comparison.
Fig. 3 is similar to Fig. 2 but here the concentration is on the overlap region. More details
of this �-�� will be given in the subsection following the �-� comparison. (A ��-� comparison
is identical to a �-�� but with the sign of �m2

13 ipped.)

A. Both Neutrinos

It is worthwhile to have a simple formula which relates between two �� ! �e appearance
probabilities obtained by JHF and NuMI both in neutrino (or anti-neutrino) channel. Let
us restrict, for de�niteness, the following discussion into the case of neutrino channel. Then,
one can easily derive the following expression

PN � PN
�

XN�
� P J � P J

�
XJ�

=

"
Y N
�

XN�
cos

 
�N
13

2

!
� Y J

�
XJ�

cos

 
�J

13

2

!#
� cos Æ

�
"
Y N
�

XN�
sin

 
�N
13

2

!
� Y J

�
XJ�

sin

 
�J
13

2

!#
� sin Æ

= 2 (C� cos Æ � S� sin Æ) � (22)

We want to understand the behavior of two loci corresponding to positive and negative
�m2

13 in Fig. 1 as a function of �J and �N . In particular, we are interested in how the
slopes of the two \pencils" change in Fig. 1. To this goal we compute the slope ratio of the
central axis of positive �m2

13 to the negative �m
2
13. Since the central axis of the \pencil" is

obtained by equating LHS of Eq. (22) to zero, the slope of PN � P J line in Fig. 1 is simply

given by �� � XN
�

XJ
�

. Thus the slope ratio can be written as

�+
��

=

XN
+

XN
�

XJ
+

XJ
�

=
sin2

�
BN
�

2

�
=(

BN
�

2
)2

sin2
�
BN
+

2

�
=(

BN
+

2
)2
�

sin2
�
BJ
+

2

�
=(

BJ
+

2
)2

sin2
�
BJ
�

2

�
=(

BJ
�

2
)2

(23)

Therefore, the behavior of the slope ratio is controlled by a single function sin2 x=x2.
To have a qualitative understanding we perform perturbation expansion assuming matter

e�ect is small, aL� �13. Noting that B� = �13 � aL for both JHF and NuMI we obtain,
to �rst order in matter e�ect,

�+
��

= 1 + 2

"
2

�N
13

� cot

 
�N
13

2

!#
(aL)jNuMI � 2

"
2

�J
13

� cot

 
�J
13

2

!#
(aL)jJHF (24)
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Therefore, the slope of positive-�m2
13 \pencil" is larger than negative-�m

2
13 \pencil" because

of the larger matter e�ect in NuMI.
To understand the energy dependence of the slope ratio we note that 1

x
� cotx is a

monotonically increasing function of x in 0 � x � �. Let us �rst examine the case of
�N
13 = �J

13. When the neutrino energy is increased from the oscillation maximum (which
means lowering �13's) the slope ratio decreases, in agreement with the behavior in Fig. 1,
from 1(a) to 1(d). We have checked that lowering the energy (larger �13's) in fact leads
to larger slope ratio. However at energies below oscillation maximum the probabilities and
event rates rapidly get smaller.

The behavior of slopes of \pencils" in other parts in Fig. 1 can also be understood in a
similar manner. From Fig. 1(a) to 1(b) the slope ratio decreases, whereas from Fig. 1(a) to
1(c) it increases. The change in 1(a) to 1(b) is obtained by lowering �N

13 while keeping �
J
13

�xed. Since the second term in the RHS of (24) decreases as �N
13 decreases, and hence the

slope ratio decreases, in agreement with Figs. 1(a) and 1(b). Similarly, from Fig. 1(a) to
1(c) �J

13 decreases while keeping �N
13 is kept �xed. It should lead relatively small amount

of increase in the slope ratio, again in agreement with Figs. 1(a) and 1(c).
However the slope of these \pencils" is not the total story, the width of the \pencils"

is also important. Although the ratio of slopes is slightly larger in Fig. 1(c) than Fig. 1(a)
the width of the \pencils" is signi�cantly larger for Fig. 1(c) than Fig. 1(a) such that the
separation of the allowed regions is smaller for Fig. 1(c) than Fig. 1(a). The square of the
width of the \pencils" is controlled by the quantity

4(S2
� + C2

�) =

 
Y N
�

XN�

!2
+

 
Y J
�

XJ�

!2
� 2

 
Y N
�

XN�

! 
Y J
�

XJ�

!
cos(

�N
13

2
� �J

13

2
): (25)

For �N
13 = �J

13, the width equals

 
Y N
�

XN�
� Y J

�
XJ�

!2
; (26)

and is very small. This smallness follows from the fact that, at the same �13, the identity
Y N�p
XN
�

=
Y J�p
XJ
�

holds ( Yp
X
depends only on vacuum parameters), and ratio of XN

� to XJ
� is

close to unit. If �N
13 6= �J

13, then
Y N�p
XN
�

6= Y J�p
XJ
�

and the width of the pencil grows rapidly

as the cancellation that occurs for the same �13 no longer holds. Thus the width of the
\pencils" in Fig. 1(b) and Fig. 1(c) are approximately equal and are much larger than the
width in Fig. 1(a) and Fig. 1(d).

The conclusion to be gained from these results and �gures is that if you are making a
comparison of a JHF neutrino experiment and a NuMI neutrino experiment to determine
the sign �m2

13 then the best separation occurs when �J = �N i.e. the same E
L
for both

experiments. Smaller values of the E are slightly preferred so that we expect the optimum
value, once all experimental issues are included, to be near oscillation maximum (Fig. 1(a)
and 1(d)). Away from the same E

L
for both experiments the separation between the allowed

region becomes worse, apart from special ranges of the CP or T violating phase Æ when�
E
L

�
jJHF >

�
E
L

�
jNuMI (Fig. 1(c)). Whereas for the choice

�
E
L

�
jJHF <

�
E
L

�
jNuMI (i.e

�J > �N) there is signi�cant overlap between the two di�erent sign of �m2
13 allowed regions

9



(Fig. 1(b)). (If one moves further, say, to EJHF = 0:6 GeV and ENuMI = 2:5 GeV, the two
pencils overlap almost completely.) In these regions no matter how accurate the experiment
the sign of �m2

13 cannot be determined by this comparison. (For JHF anti-neutrinos versus
NuMI anti-neutrinos the conclusion is the same.)

In summary, for the comparison JHF neutrinos to NuMI neutrinos to be useful in the
determination of the sign of �m2

13, choosing�
E

L

�
jJHF �

�
E

L

�
jNuMI (27)

is of great importance with the preference for equal
�
E
L

�
. For

�
E
L

�
jJHF <

�
E
L

�
jNuMI there

is signi�cant overlap between the narrow allowed regions so that this is not a good choice
for this comparison.

Contrary to advantage of �-� comparison in determination of the sign of �m2
13, mea-

surement of �13 su�ers from large uncertainty in this channel. The bi-probalitity trajectory,
for a given �, moves nearly along the direction of the \pencil" as one varies Æ, thus any
measurement of the oscillation probabilities with �nite resolution cannot pinpoint the value
of �. To indicate this point we have plotted in Fig. 1 by numbers in % beside thin arcs
the fractional di�erence ��=� � (�2 � �1)= ((�2 + �1)=2), where �2 and �1 here indicate the
maximal and the minimal values of �13 along each arc. The numbers are large, typically 30
% or even larger.

In fact, it is easy to do analytical estimate of the fractional di�erence. Suppose that
we have measured an appearance probability P J or PN . We assume for simplicity that
we know the sign of �m2

13, and restrict ourselves into the case of oscillation maximum,
�J
13 = �N

13 = �. The measured probability allows a range of �13 [21] and one can easily
calculate the maximal value of ��=� within the range, which leads to

��

�
= sin 2�12c23

�12p
P J=N

 
sin (aL=2)

aL=2

!
: (28)

Since P J=N is a few % level, it leads to a few tens in % of the fractional di�erence, in
agreement with the numbers in Fig. 1.

B. One Neutrinos and One Anti-Neutrinos

We now turn to the comparison for JHF neutrinos and NuMI anti-neutrinos or vice
versa with ipped signs of �m2

13. Again one can write a simple formulae relating the two
oscillation probabilities similar to Eq. (22)

PN � PN
�

XN�
� P J � P J

�
XJ�

=

"�Y N
�

XN�
cos

 
�N
13

2

!
� Y J

�
XJ�

cos

 
�J
13

2

!#
� cos Æ

�
"
Y N
�

XN�
sin

 
�N
13

2

!
� Y J

�
XJ�

sin

 
�J
13

2

!#
� sin Æ

= 2 (C� cos Æ � S� sin Æ) � (29)

The square of the RHS of this equation controls the square of the width of the allowed region
and is given by
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4(S2
� + C2

�) =

 
Y N
�

XN�

!2
+

 
Y J
�

XJ�

!2
+ 2

 
Y N
�

XN�

! 
Y J
�

XJ�

!
cos(

�N
13

2
+
�J
13

2
) (30)

apart from an overall factor of �2. As (�N
13+�J

13) varies from � (both experiments at energies
twice the oscillation maximum energy) to 2� (both experiments at the oscillation maximum
energy) this squared width grows from

 
Y N
�

XN�

!2
+

 
Y J
�

XJ�

!2
to

 
Y N
�

XN�
� Y J

�
XJ�

!2
: (31)

Note that the later width is larger than the �rst width since Y�=X� has opposite sign to
Y+=X+ (no cancellation occurs here). Thus the width of the allowed region grows as you
lower the energies of the experiments to oscillation maximum. This can be seen in Fig. 2;
2(d) has the smallest width whereas 2(a) has the largest in accordance with the above
statement.

There is signi�cant overlap between the allowed regions of positive and negative �m2
13

contours. Hence, the �-�� comparison does not appear to be the right way for determining
the sign, unless Æ turns out to be close to 3�=2 and �=2 for �m2

13 > 0 and �m2
13 < 0 cases,

respectively [20]. However, this comparison may be better to measure �13 if JHF operate only
in neutrino channel, as planned, and if NuMI O�-Axis is running with signi�cant overlap
with JHF phase I. For this purpose, the best way of measuring �13 would be to tune the
energy at oscillation maxima for both JHF and NuMI. This is just an extension of the KMN
strategy [21].

The reader may be curious as to why the slopes of the shrunken trajectories at �13 = �
are positive in �-� comparison whereas they are negative in �-�� comparison. This can be
easily understood as follows: The slopes of shrunken trajectories in �-� comparison are
given by Y N

+ =Y J
+ (Y N

� =Y J
� ) for positive (negative) �m2

13. On the other hand, the slopes
in �-�� comparison are given by Y N

� =Y J
+ (Y N

+ =Y J
� ) for positive (negative) �m2

13. Since Y�
di�er in sign, as in Eq. (3), the latter slopes are negative de�nite, whereas the former are
positive de�nite. The fact that the �-� trajectory is along the \pencil" and �-�� trajectory
is perpendicular to axis of the \cigar" can be understood by a similar argument.

IV. ANOTHER INTERESTING COMPARISON

When we have access to �e and ��e beams then a comparison of a �� ! �e experiment
with ��e ! ��� experiment will be possible.3 This comparison is interesting because it directly
compares two CPT conjugate processes. If CPT is conserved, then at the same E/L the
only di�erence between the oscillation probabilities for �� ! �e and ��e ! ��� can come
from matter e�ects. Thus this comparison is even more sensitive to the mass hierarchy, i.e.
the sign of �m2

13, than the neutrino-neutrino comparison discussed earlier in the previous
section.

3Possible ways to produce electron neutrino beams include muon storage rings (Neutrino Factories

[31]) and �-beams [32].
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For this comparison the bi-probability �gure looks similar to Fig. 1 but the di�erence
in slope between the \pencils" is enhanced because the sign of the matter e�ect is opposite
for ��e ! ��� compared to �� ! �e and the CP or T violating terms are identical in sign and
magnitude. Therefore this comparison provides an excellent way to separate the two signs
of �m2

13. If we label the two experiments as J and N as before then the ratio of slopes is
given by

�+
��

=

XN
+

XN
�

XJ
�

XJ
+

= 1 + 2

"
2

�N
13

� cot

 
�N
13

2

!#
(aL)jN + 2

"
2

�J
13

� cot

 
�J
13

2

!#
(aL)jJ : (32)

This expression di�ers from that of Eq.(24) by the sign of the third term. Here the matter
e�ects for both experiments enhance the ratio of the slopes whereas in the neutrino-neutrino
comparison early there was a partial cancellation. Although at present the comparison of
this section is purely academic it is instructive and useful for understanding the general
nature of the comparison of neutrino oscillation experiments and will be important to test
the possibility of CPT violation in the future.

V. SUMMARY AND CONCLUSIONS

We have presented a general formalism for comparing two or more long baseline neutrino
oscillation experiments and applied this formalism to the JHF and NuMI experiments. The
combination of modes that will be important depends on the question one is asking and
what other information is available at the time. The use of bi-probability diagrams like
the ones presented in this paper will be important for understanding the physics issues and
making trade o�s at the time decisions are made regarding neutrino energies and modes of
operation.

In general, the both neutrino or both anti-neutrino comparison is useful for determining
whether the mass hierarchy is normal or inverted, i.e. the sign �m2

13. However, it is impor-
tant here that the experiment with the larger matter e�ect (longer baseline - NuMI) have
a smaller or equal neutrino energy over baseline, E/L, than the experiment with smaller
matter e�ect (shorter baseline - JHF). If the JHF experiment runs �rst then NuMI should
also run at a similar or smaller E/L to provide the best sensitivity to the di�erent mass hi-
erarchies. The separation between the di�erent mass hierarchies is reduced if the NuMI E/L
is higher than the JHF E/L. The size of the small mixing angle, �13, cannot be determined
to better than about 30% with this comparison alone.

The one neutrino - one anti-neutrino comparison is in general most useful for determining
the size of the small mixing angle, �13 and the CP or T violating phase Æ. It could also be
useful in determining the mass hierarchy provided nature does not choose the large overlap
region in the bi-probability plot. For this comparison, the uncertainty in �13 from the
degeneracy issue is not important until the experimental resolution in �13 is better than
10%.
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APPENDIX A

In this Appendix, we �rst explain briey why the universal formalism with generic nota-
tions given in Table 1 is possible. The �rst secret behind it is the relationship between X's
and Y 's with di�erent sign of �m2

13. Let us think of the expressions of the appearance prob-
abilities in neutrino and anti-neutrino channel similar to (1), and de�ne coeÆcient function
�X� as well as X�. They can be expressed by using a single functionX as X� � X(��m2; a)
and �X� = X(��m2;�a). The similar notation can also be de�ned for Y 's. Then,

X� = �X�
Y� = ��Y�; (33)

because X's and Y 's (except for extra sign) are the function only of �13�aL, which follows
from the CP-CP relation in [29] and the approximation introduced in [30]. We note that
X� and Y� satisfy the useful identity

Y+p
X+

= � Y�p
X�

: (34)

Next we present general solutions of (1) whose validity extends any combinations of
channels tabulated in Table 1. For any given process and sign of �m2

13 there are two
solutions to these equations which we will label by (�1; Æ1) and (�2; Æ2). The equations (6)
can be solved for the CP phase Æ for either sign of �m2

13 as:

sin Æ1;2 =
�
�S�P �C

q
S2 + C2 � (�P )2

�
=(S2 + C2)

cos Æ1;2 =
�
�C�P � S

q
S2 + C2 � (�P )2

�
=(S2 + C2) (35)

Notice that with this choice of signs sin2 Æi + cos2 Æi = 1, and the variables �P , S, and C
are de�ned as

�P �
s
P � � P ��

X�
�
s
P � � P �

�
X�

S �
"
R� sin

�
��

2

�
�R� sin

 
��

2

!#

C �
"
�R� cos

�
��

2

�
+R� cos

 
��

2

!#
; (36)
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where we have de�ned the variable

R� � Y �

2X�
(37)

which appears frequently. The corresponding �'s are then given by

�1;2 =

0
@R� sin (

��

2
)

s
(P � � P �

�)
X�

�R� sin (
��

2
)

s
(P � � P ��)

X�

+ R� sin (
��

2
)R� sin (

��

2
)

 
cot

��

2
� cot

��

2

!
cos Æ1;2

!

=

 
R� sin (

��

2
)�R� sin (

��

2
)

!
: (38)

Under the interchange of � and �, Æ1 $ Æ2 and �1 $ �2 as it should. Also for useful exper-
iments cot �

�

2
is always �nite. These two solutions coincide, �1 = �2, when the coeÆcient

in front of the cos Æ1;2 term vanishes or cos Æ1 = cos Æ2. The �rst possibility occurs when
�� = �� or �� = �� = ���. While the second occurs at the edge of the allowed region
when the square root in Eq.(35) vanishes.

The allowed region in (P �; P �) bi-probability space is given by

(�P )2 � S2 + C2 = (R�)2 + (R�)2 � 2R�R� cos

 
��

2
� ��

2

!
: (39)

This region is determined by requiring the sin Æ and cos Æ to be real. The boundary is
determined by the equality in eqn (39). Thus the quantity

(R�)2 + (R�)2 � 2R�R� cos

 
��

2
� ��

2

!
: (40)

controls the separation of the two boundaries and hence the size of the allowed region.
Depending on the value of (�� � ��) this can range from (�P )2 = (R� � R�)2 when
(�����) = 0; 2� � � � to (�P )2 = (R�+R�)2 for (�����) = ��;�3� � � �. Which of these
two extremes gives the larger allowed region depends on the relative signs of R� and R�.
This will be very important since the relative signs changes as we go from both neutrino (or
both anti-neutrino) to one neutrino and one anti-neutrino process.

Let us now compute the di�erence between two solutions of Æ. One can show by using
(35) that

cos (Æ1 + Æ2) = 1 � 2

h
R� sin

�
��

2

�
�R� sin

�
��

2

�i2
(R�)2 + (R�)2 � 2R�R� cos

�
��

2
� ��

2

� : (41)

One can easily check that Eq. (41) reduces to Eq. (45) of [23] if we take �� = ���. The
relationship (41) implies that

Æ2 = � � Æ1 + 2arcsin
jR� sin

�
��

2

�
�R� sin

�
��

2

�
jr

(R�)2 + (R�)2 � 2R�R� cos
�
��

2
� ��

2

� (42)
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where use has been made of the relation arccos (1 � 2x2) = 2 arcsin x. Thus the second
solution Æ2 di�ers from � � Æ1 by a constant which depends on the energy and path length
of the neutrino beams as well as on the process but not on the mixing angle �13 for any
two-experiment comparison. This generalizes the result obtained in [23].

At the oscillation maximum, j��j = j��j = � and cos (Æ1 + Æ2) = �1 i.e Æ2 = ��Æ1. This
is a reection on the fact that at oscillation maximum the trajectory in the bi-probability
space is an ellipse with zero width as can easily be seen from Eq. (1) as there is no dependence
on cos Æ at this point.

APPENDIX B

We evaluate the correction to the relationship between two degenerate solutions of Æ in
�-� and �-�� comparison. Let us �rst discuss �-�� comparison �rst.

We expand S0�, C
0
�, and �P 0

� at around the JHF parameters. For simplicity, we only
deal with the case �N = �J . They read,

S0� = SJ� �
�A
4

 
Y J
�

XJ�

!
sin

 
�J
13

2

!"
g

 
aLJ

2

!
� g

�
B�
2

�#
(43)

C 0
� = CJ

� +
�A
4

 
Y J
�

XJ�

!
cos

 
�J
13

2

!"
g

 
aLJ

2

!
� g

�
B�
2

�#
(44)

�P 0
� = �P J

� �
�A
2

vuutPN � PN�
XJ�

g
�
B�
2

�
; (45)

where �A � (aL)N � (aL)J . We have de�ned the function g as

g(x) � 1

x
� cotx: (46)

The function g monotonically increases in 0 � x � �.
Then, sin (Æ1 � Æ3) in Eq. (14) can be expanded to �rst order in �A as sin (Æ1 � Æ3) =

CN�J�A. The coeÆcient CN�J is given by

CN�J =
SJCJ

DJ
g

 
aLJ

2

!
+
1

4

�P0q
DJ ��P 2

0

"
g

 
BJ
+

2

!
+ g

 
BJ
�
2

!#

+
1

2 sin�J

SJCJ

DJ

�P0q
DJ ��P 2

0

"
g

 
BJ
+

2

!
� g

 
BJ
�
2

!
� 2g

 
aLJ

2

!#

� 1

8

sin�J

DJ

2
4 Y J

+

XJ
+

!2
g

 
BJ
�
2

!
+

 
Y J
�

XJ�

!2
g

 
BJ
+

2

!35

� 1

2

1q
DJ ��P 2

0

2
4
vuutPN � PN�

XJ
+

g

 
BJ
�
2

!
�
vuutPN � PN�

XJ�
g

 
BJ
+

2

!35 (47)

where SJ , CJ , and �P0 indicate, respectively, the �A ! 0 limit of S0�, C
0
�, and �P 0

+ (or
superscript N replaced by J). Notice that �P 0

+ = ��P 0
� � �P0 in the limit PN = P J and

that SJ+ = SJ� = SJ andCJ
+ = CJ

� = CJ .
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Now we turn to �-� comparison. In this case there is no zeroth order term in S� etc. for
reasons explained in subsection IIA. Instead they start with the �rst-order terms in �A. We
do not give the details but just mention that sin (Æ1 � Æ3) is given to �rst-order by

sin (Æ1 � Æ3) =
P J

Y J
+
Y J
�p

XJ
+
XJ
�

2
6641 + g

�
aLJ

2

�
g

�
BJ
�

2

�
3
775
2
6641 � g

�
aLJ

2

�
g

�
BJ
+

2

�
3
775

�

2
6664sin (�J)

0
BBB@1 +

vuuuuut (Y J
+ )2

4XJ
+P J

2
6641 + g

�
aLJ

2

�
g
�
BJ
�

2

�
3
775
2

� 1

vuuuuut (Y J� )2

4XJ�P J

2
6641 + g

�
aLJ

2

�
g
�
BJ
+

2

�
3
775
2

� 1

1
CCCA

� cos (�J)

0
BBB@
vuuuuut (Y J

+ )2

4XJ
+P J

2
6641 + g

�
aLJ

2

�
g
�
BJ
�

2

�
3
775
2

� 1 �

vuuuuut (Y J� )2

4XJ�P J

2
6641 + g

�
aLJ

2

�
g
�
BJ
+

2

�
3
775
2

� 1

1
CCCA
3
7775 (48)

One can show that (Æ1 � Æ3) is in the second quadrant because cos (Æ1 � Æ3) < 0 in our
convention.
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FIG. 1. Allowed range of P (�� ! �e) for JHF verses P (�� ! �e) for NuMI, which are referred

to as \pencils" in the text, are delimited by thick solid (dashed) lines for positive (negative)

�m2
13 for the energies (EJHF/GeV, ENuMI/GeV) = (a) (0.6,1.5), (oscillation maximum for both

experiments) (b) (0.6,2.0), (c) (0.8,1.5) and (d) (0.8,2.0). In the same plot, the positions for some

representative values of the fractional variation across the width of the \pencil" of � � sin �13, ��=�

[%], indicated by numbers, are shown by thin solid arcs. Inside each allowed region, trajectories

corresponding to sin2 2�13 = 0:02, 0.05 and 0.09 are plotted by dotted lines. The mixing parameters

are �xed to be j�m2
13j = 2:5�10�3 eV2, sin2 2�23 = 1:0, �m2

12 = +7�10�5 eV2 and sin2 2�12 = 0:85

whereas �13 and Æ are assumed to be unknown. The electron density is �xed to be Ye� = 1:15 and

1.4g cm�3 for JHF and NuMI experiment, respectively. For JHF and NuMI both anti-neutrinos,

the roles of �m2
13 > 0 and �m2

13 < 0 are interchanged.
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FIG. 2. Iso-contours of ��=� [%] are indicated in the allowed range of P (�� ! �e) for JHF

verses P (��� ! ��e) for NuMI delimited by solid (dashed) lines for positive (negative) �m2 for the

same combinations of energies as in Fig. 1. Inside each allowed region, trajectories corresponding

to sin2 2�13 = 0:02, 0.05 and 0.09 are plotted by dotted lines. The assumption about the mixing

parameters are the same as in Fig. 1. For JHF anti-neutrinos and NuMI neutrinos, the roles of

�m2
13 > 0 and �m2

13 < 0 are interchanged.
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FIG. 3. Iso-contours of ��=� [%], except for (a), are indicated in the overlap regions of the

allowed range of P (�� ! �e) for JHF verses P (��� ! ��e) for NuMI for the positive and negative

signs of �m2
13 for the combinations of energies shown in Fig. 2. For (a), inside the shaded region,

��=� varies very little, taking values close to 9 %.
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